494. 目标和

这道题目还没有太搞明白

现在明白了!!背下来就是最好的方法,对于我这个砂纸!!

背下来

求装满背包的方法 dp[j] += dp[j - nums[i]]

注意遍历背包和遍历物品的顺序。

有下面两种:

排列问题:先背包物品,注意内层循环判断背包大于物品

组合问题:先物品背包,注意遍历背包要是否要倒序就涉及到是01背包还是完全背包

本题是组合问题且是**01背包(倒叙背包)**。

Problem: 494. 目标和

Reference

https://www.programmercarl.com/0494.%E7%9B%AE%E6%A0%87%E5%92%8C.html#%E6%80%9D%E8%B7%AF

思路

这是这道题目最为巧妙地地方:如何转化为01背包问题。

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法。

这里的x,就是bagSize,也就是我们后面要求的背包容量。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:

(C++代码中,输入的S 就是题目描述的 target)
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
同时如果 S的绝对值已经大于sum,那么也是没有方案的。

(C++代码中,输入的S 就是题目描述的 target)
if (abs(S) > sum) return 0; // 此时没有方案

时间复杂度:

添加时间复杂度, 示例: $O(n)$

空间复杂度:

添加空间复杂度, 示例: $O(n)$

Code

[]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (abs(target) > sum) return 0; // 此时没有方案
if ((target + sum) % 2 == 1) return 0; // 此时没有方案
int bagSize = (target + sum) / 2;
vector<int> dp(bagSize + 1, 0);
dp[0] = 1;
for (int i = 0; i < nums.size(); i++) {
for (int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
};